Abstract |
The microbial communities of three different habitat types and from two sediment depths in the River Elbe were investigated by fluorescence in situ hybridization at various levels of complexity. Differences in the microbial community composition of free-flowing river water, water within the hyporheic interstitial and sediment-associated bacteria were quantitatively analyzed using domain- and group-specific oligonucleotide probes. Qualitative data on the presence/absence of specific bacterial taxa were gathered using genus- and species-specific probes. The complete data set was statistically processed by univariate statistical approaches, and two-dimensional ordinations of nonmetric multidimensional scaling. The analysis showed: (1) that the resolution of microbial community structures at microenvironments, habitats and locations can be regulated by targeted application of oligonucleotides on phylogenetic levels ranging from domains to species, and (2) that an extensive qualitative presence/absence analysis of multiparallel hybridization assays enables a fine-scale apportionment of spatial differences in microbial community structures that is robust against apparent limitations of fluorescence in situ hybridization such as false positive hybridization signals or inaccessibility of in situ oligonucleotide probes. A general model for the correlation of the phylogenetic depth of focus and the relative spatial resolution of microbial communities by fluorescence in situ hybridization is presented. |