Abstract |
Cultivation-dependent and -independent methods were combined to investigate the microdiversity of a Polynucleobacter subcluster population (Betaproteobacteria) numerically dominating the bacterioplankton of a small, humic freshwater pond. Complete coverage of the population by cultivation allowed the analysis of microdiversity beyond the phylogenetic resolution of ribosomal markers. Fluorescent in situ hybridization with two probes specific for the narrow subcluster C (PnecC bacteria) of the Polynucleobacter cluster revealed that this population contributed up to 60% to the total number of bacterioplankton cells. Microdiversity was investigated for a date at which the highest relative numbers of PnecC were observed. A clone library of fragments of the ribosomal operon (16S rRNA genes, complete 16S-23S internal transcribed spacer 1 [ITS1], partial 23S rRNA genes) amplified with universal bacterial primers was constructed. The library was stepwise screened for fragments from PnecC bacteria and for different ITS genotypes of PnecC bacteria. The isolated PnecC strains were characterized by sequencing of the 16S rRNA genes and the ITS1. Both the clone library and the established culture collection contained only the same three ITS genotypes, and one of them contributed 46% to the entire number of clones. Genomic fingerprinting of the isolates with several methods always resulted in the detection of only one fingerprint per ITS genotype. We conclude that a Polynucleobacter population with an extremely low intraspecific diversity and an uneven structure numerically dominated the bacterioplankton community in the investigated habitat. This low intraspecific diversity is in strong contrast to the high intraspecific diversities found in marine bacterial populations. |