Calculating ...

Press ESC to cancel.

Paper details

Reference Microbial community and physicochemical analysis of an industrial waste gas biofilter and design of 16S rRNA-targeting oligonucleotide probes. Friedrich U, Van Langenhove H, Altendorf K, Lipski A. Environmental microbiology. 2003.
Abstract A study was conducted to investigate the microbial community structure, the physicochemical properties, and the relationships between these parameters of a full-scale industrial biofilter used for waste gas abatement in an animal-rendering plant. Fluorescence in situ hybridization (FISH) was successfully combined with digital image analysis to study the composition of the microbial community. Several new nucleic acid probes were designed and established based on published 16S rDNA sequences and on ones retrieved from the biomass of the biofilter under investigation. Bacterial detection rates varied greatly over time and filterbed depth between 27.2% and 88.1% relative to DAPI counts. Overall, members of the Betaproteobacteria followed by Actinobacteria, Alphaproteobacteria, Cytophaga-Flavobacteria, Firmicutes and Gammaproteobacteria were the most abundant groups. Among the groups below phylum level, members of the Alcaligenes/Bordetella lineage were on average the most abundant group accounting for up to 8.5% of DAPI-stained cells. Whereas the community composition generally showed no vertical gradient, the lower 50 cm of the biofilter proved to be the most active part for the degradation of aldehydes such as 2- and 3-methylbutanal, 2-methylpropanal, and hexanal. This zone of the filterbed being operated in up-flow direction degraded about 80% of these compounds. Dimethyldisulphide was the most common reduced sulphur compound. Statistical analysis of microbial versus waste gas parameters generally revealed only weak or non-significant correlations between the two. Possible explanations for this finding are discussed.
Pubmed ID 12588298